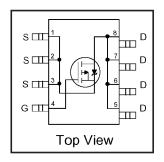
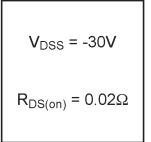
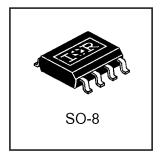
PD - 95137

International Rectifier

- Generation V Technology
- Ultra Low On-Resistance
- P-Channel Mosfet
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching
- Lead-Free


Description


Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

IRF7416PbF

HEXFET® Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-10	۸
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ - 10V	-7.1	A
I _{DM}	Pulsed Drain Current ①	-45	
P _D @T _A = 25°C	Power Dissipation	2.5	W
	Linear Derating Factor	0.02	mW/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	370	mJ
dv/dt	Peak Diode Recovery dv/dt ③	-5.0	V/ns
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance Ratings

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®		50	°C/W

IRF7416PbF

International

TOR Rectifier

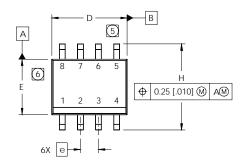
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.				Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	V _{GS} = 0V, I _D = -250μA
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.024		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.020	Ω	V _{GS} = -10V, I _D = -5.6A ④
				0.035		V _{GS} = -4.5V, I _D = -2.8A ④
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}, I_D = -250 \mu A$
g _{fs}	Forward Transconductance	5.6			S	V _{DS} = -10V, I _D = -2.8A
I	Drain-to-Source Leakage Current			-1.0	μА	V _{DS} = -24V, V _{GS} = 0V
I _{DSS}	Brain-to-obtaile Leakage Garrent			-25		V _{DS} = -24V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
IGSS	Gate-to-Source Reverse Leakage			100	ш	$V_{GS} = 20V$
Qg	Total Gate Charge		61	92		$I_D = -5.6A$
Q _{gs}	Gate-to-Source Charge		8.0	12	nC	$V_{DS} = -24V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		22	32		V_{GS} = -10V, See Fig. 6 and 9 \oplus
t _{d(on)}	Turn-On Delay Time		18			V _{DD} = -15V
t _r	Rise Time		49		no	$I_D = -5.6A$
t _{d(off)}	Turn-Off Delay Time		59		ns	$R_G = 6.2\Omega$
t _f	Fall Time		60			$R_D = 2.7\Omega$, See Fig. 10 $\textcircled{4}$
C _{iss}	Input Capacitance		1700			V _{GS} = 0V
Coss	Output Capacitance		890		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		410			f = 1.0MHz, See Fig. 5

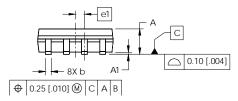
Source-Drain Ratings and Characteristics

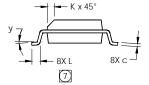
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			2.4		MOSFET symbol
	(Body Diode)			-3.1	Α	showing the
I _{SM}	Pulsed Source Current			-45	1 /	integral reverse
	(Body Diode) ①			-45		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.0	V	$T_J = 25$ °C, $I_S = -5.6$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		56	85	ns	$T_J = 25^{\circ}C, I_F = -5.6A$
Q _{rr}	Reverse RecoveryCharge		99	150	nC	di/dt = 100A/µs ③

Notes:

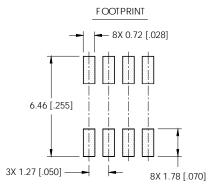

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting T_J = 25°C, L = 25mH R_G = 25 Ω , I_{AS} = -5.6A. (See Figure 12)
- $\label{eq:loss_distance} \begin{tabular}{ll} $I_{SD} \le -5.6A, \ di/dt \le 100A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ $T_J \le 150 ^{\circ}C$ \end{tabular}$

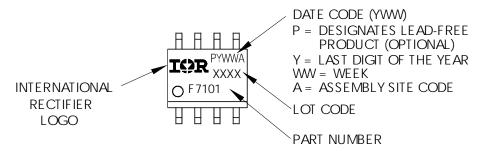
IRF7416PbF


International
Rectifier


SO-8 Package Outline

Dimensions are shown in millimeters (inches)

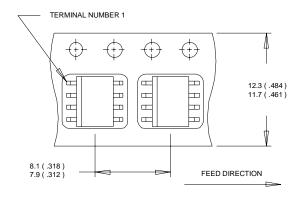

DIM	INC	HE2	MILLIM	FIERS		
DIIVI	MIN	MAX	MIN	MAX		
Α	.0532	.0688	1.35	1.75		
A1	.0040	.0098	0.10	0.25		
b	.013	.020	0.33	0.51		
С	.0075	.0098	0.19	0.25		
D	.189	.1968	4.80	5.00		
Е	.1497	.1574	3.80	4.00		
е	.050 B	ASIC	1.27 B			
e1	.025 B	ASIC	0.635 E			
Н	.2284	.2440	5.80	6.20		
K	.0099	.0196	0.25	0.50		
L	.016	.050	0.40	1.27		
У	0°	8°	0°	8°		


NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- ① DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

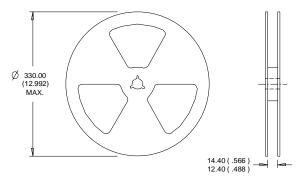


IRF7416PbF

International IOR Rectifier

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)


NOTES:

- NOTES:

 1. CONTROLLING DIMENSION: MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

> International IOR Rectifier